

Advanced optical methods for nondestructive assessment of food quality

Alessandro Torricelli

Politecnico di Milano, Dipartimento di Fisica, Milan (Italy) Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan (Italy)

25 November 2016 – Bozen (Italy)

Department of Physics, Politecnico di Milano Photonics for Health, Food and Cultural Heritage

Rinaldo Cubeddu

Alessandro Torricelli

Gianluca Valentini

Cosimo D'Andrea

Alberto Dalla Mora

Davide Contini

Antonio Pifferi

Paola Taroni

Andrea Bassi Daniela Comelli

Staff @PoliMi

Staff @ IFN-CNR

Lorenzo Spinelli Austin Nevin Andrea Farina

Post-Docs

Alessia Candeo Laura DI Sieno Sanathana Konugoglu Edoardo Martinenghi Rebecca Re Maristella Vanoli Center for Ultrafast Science and Biomedical Optics LaserLab-EUROPE Politecnico di Milano -Dipartimento di Fisica Milan, Italy

European Large Scale Facility since 2002

Access to infrastructure Full reimbursment of travel and accomodation expenses

POLITECNICO DI MILANO

+ PhD Students

- + Undergraduate Students
- + Facilities (mechanic and electronic workshop)

Can light penetrate biological tissues?

Georges de La Tour (1593 – 1652)

St Joseph, 1642, Louvre, Paris

Thanks to Marco Ferrari (UnivAQ)

A. Torricelli

The therapeutic and diagnostic window

Light propagation in diffusive media: absorption and scattering

$$I_{out} = I_{in}e^{-\mu_a L}$$
 $I_{out} = I_{in}e^{-(\mu_a + \mu_s)L}$

Absorption: related to tissue components

Absorption coefficient: $\mu_a = 1/\ell_a$ (cm⁻¹)

Scattering: related to tissue structure

Scattering coefficient: $\mu_s = 1/\ell_s$ (cm⁻¹)

A. Torricelli

Time-resolved Reflectance Spectroscopy (TRS) Basics

Optical Mammography OPTIMAMM Project FP5 (2000-2003)

Patient #47, oblique view

age: 36 y thickness = 5.7 cm Lesion size = 3.0 cm Lesion type = tumor

52%-89% 62%-95% 17-

17 - 91 μΜ 16 - 66 μΜ

Clinical study (225 lesion)

Туре	View	Cases	Detection rate	Failures	Corrected detection rate
Cancer	2	41	73%		80%
	1	9	89%	4	96%
	0	6	11%		
Cyst	2	59	72%	8	83%
	1	5	78%	3	90%
	0	18	22%		000010000000000000000000000000000000000
Fibroadenoma	2	17	33%	2	39%
	1	5	43%	5	50%
	0	29	57%		

Taroni et al., TRTC 4:527-537 (2005).

An optical neuro-monitor of cerebral oxygen metabolism & blood flow for neonatology

Clinical testing @ Copenhagen & Milan

4 countries / 9 partners

- 🍳 4 academic
- 2 hospitals
- 3 industrial

GA no. 620996 CIP ICT-PSP

Percent Percent Percenter Percenter

Microvascular, local, cerebral blood oxygen saturation blood volume blood flow

A. Torricelli

Noninvasive imaging of brain function and disease by pulsed near infrared light (nEUROPt FP7 2008-2012)

ULD patients

Time [s]

1.9

10 12 14 16 18 20 22 24 26 28 30

[deoxy-Hb]

10 12 14 16 18 20 22 24 26 28 30

A, D:

O₂Hb and HHb time-courses in the most reactive channel and the corresponding GLM activation maps.

B, E:

1.9

BOLD signal extracted from the active cluster and fMRI maps.

In collaboration with: I.Gilioli, S.Franceschetti, F. Panzica, E.Visani @ IRCCS Besta Milan, Italy

Time [s]

A. Torricelli

Wavelength: 650-670 nm chlorophyll 780 nm background

A. Torricelli

Visible (VIS) and near infrared (NIR) spectroscopy: continuous wave (CW) approach

VIS: 400-700 nm NIR: 700-3000 nm (nondestructive assessment of EXTERNAL properties) (nondestructive assessment of INTERNAL properties)

Rich Ozanich, Berkeley Instruments Inc., Richland, WA

Instrumentation for CW NIR spectroscopy

HL200 Ocean Optics ≈ 1000 €

Notebook ≈ 1000 €

USB4000 Ocean Optics ≈ 2000 €

DA-meter, courtesy of P. Rozzi, Sinteleia (Italy)

Spider, courtesy of Manuela Zude ATB Potsdam (Germany)

A. Torricelli

Light propagation in diffusive media: absorption and scattering

$$I_{out} = I_{in}e^{-\mu_a L}$$
 $I_{out} = I_{in}e^{-(\mu_a + \mu_s)L}$

Absorption: related to tissue components

Absorption coefficient: $\mu_a = 1/\ell_a$ (cm⁻¹)

Scattering: related to tissue structure

Scattering coefficient: $\mu_s = 1/\ell_s$ (cm⁻¹)

A. Torricelli

1st generation TRS Laboratory set-up for broadband TRS

Fully automated system

spectral range: 540 -1100 nm

Pifferi et al., Review of Scientific Instrument 78, 053103 (2007)

Fully automated system

spectral range: 540 -1100 nm

Pifferi et al., Review of Scientific Instrument 78, 053103 (2007)

Quantitative analysis: chemical and structural parameters

Cubeddu et al., Applied Optics 40:538-543 (2001)

2nd generation TRS Dual-wavelength transportable system for TRS

laser heads 670 nm fiber optic d swtch r V 750 nm е r TCSPC **PMT** amp sync filters and optics Cubeddu et al., Appl Spectroscopy 55:1368-1374 (2001) Torricelli et al. Sens. & Instrumen. Food Qual. 2:82-89 (2008)

POLITECNICO DI MILANO

Measurement campaigns Nondestructive assessment of maturity at harvest

Eccher Zerbini *et al.*, Postharvest Biology and Technology 39:223-232 (2006) Tijskens *et al.*, Int. J. Postharvest Technology and Innovation, 1 (2), 178-188 (2006) Tijskens *et al.*, Postharvest Biology and Technology 45:204-213 (2007) Eccher Zerbini *et al.*, Biosystems Engineering (2009)

A. Torricelli

Photo of the TRS set-up

Alessandro Torricelli analysant, à l'aide d'un rayon laser, structure cellulaire et composition chimique du fruit. B. MESSERLI

Absorption coefficient

Scattering coefficient

Chlorophyll absorption and scattering decrease during fruit growth (agreement with Seifert *et al.* Physiologia Plantarum 53(2):327–336 (2015)

In collaboration with

- Dominique Fleury, Jeanne Giesser, Reynald Pasche @ University of Applied Sciences: Changins (VD), Switzerland
- Jana Kaethner, Manuela Zude @ Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany

Next generation TRS VCSEL + SiPM

Feature	Edge Emitter	LED	VCSEL
Power dissipation	Med-High (10s-100s mW)	High (100s mW)	Lowest (a few mW)
Beam quality, ease of coupling	Fair (asymmetric, wider divergence)	Poor (very wide divergence, incoherent)	Best (round low divergence beam)
Speed	Fair (0.1-1 Gbps)	Slow (10-100 Mbps)	Fastest (1-10 Gbps)
Temperature stability	Fair (3nm/K)	Fair (~3nm/K)	5X better (0.6nm/K)

A. Torricelli

1 x 1 mm² 3 x 3 mm²

Features

- Low afterpulse
- High fill factor
- High photon detection efficiency
- Wide operating voltage range
- Short recovery time
- High count rate
- High dark count rate

Next generation TRS Compact two wavelengths TRS system

total power consumption lower than 10 W (ready for battery operation) size 200 x 160 x 50 mm³

M.Buttafava et al., "A compact two-wavelengths Time-Domain NIRS system based on SiPM and Pulsed Diode Lasers", IEEE Photonics Journal (2016) in press

- Time-resolved reflectance spectroscopy (TRS) naturally yields discrimination between light absorption (related to tissue constituents) and light scattering (related to tissue structure)
- Physical and mathematical models for TRS are available and allow quantitative data analysis for non destructive fruit quality assessment
- We have demonstrated in the last years several applications of TRS in the health sector at the clinical level and in the food sector, mainly at research level
- We are at the forefront of a new era where recent advances in photonic technologies might allow TRS to bridge the gap between research and market (the development is mostly driven by the biomedical sector)

CW and TRS hype-cycle for the biomedical field

A. Pifferi et al., "New frontiers in time-domain diffuse optics, a review," J. Biomed. Opt. 21(9), 091310 (2016), doi: 10.1117/1.JBO.21.9.091310.

A. Torricelli

Acknowledgments

People

- •M. Vanoli, A, Rizzolo, M. Grassi, CRA-IAA, Milan (I)
- •A. Zanella, Laimburg (I)
- •P. Tijskens, P. Eccher-Zerbini, WUR-HPC, Wageningen (NL)
- •B. Nicolai, W. Sayes, P. Verboven, KUL-MeBios, Leuven (B)
- •D. Fleury, J. Giesser, R. Pasche,
- University of Applied Sciences: Changins (CH)
- •J. Kaethner, M. Zude, ATB Potsdam-Bornim (D)
- •S. Lurie, R. Rud, V. Alchanati, Volcani Center ARO (IL)
- •M. Ruiz-Altisent, C.Valero, UPM, ETSI Agronomos Madrid (E)
- •D. Johnson, C. Dover, Horiculture Research International, East Malling, (UK)

•...

Funding

•DIFFRUIT, EU FP4, 1996-1999
•TRS APPLE, MAFF (UK), 2000
•AGROTEC, MIUR (I), 2000-2002
•INSIDEFOOD, EU FP7 2009-2013
•TROPICO, Regione Lombardia (I), 2010-2012
•3D Mosaic, EU ICT-AGRI, 2011-2013
•USER-PA EU ICT-AGRI 2013-2016
•MONALISA, Autonome Provinz Bozen - Südtirol

